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ABSTRACT: 

 

For nonlinear functions 

 

f

 

 of a random vector 

 

Y

 

, E[

 

f

 

(

 

Y

 

)] and 

 

f

 

(E[

 

Y

 

]) usually differ. Conse-
quently the mathematical expectation of 

 

Y

 

 is not intrinsic: when we change coordinate systems, it is
not invariant.This article is about a fundamental and hitherto neglected property of random vectors of
the form , where 

 

X

 

(

 

t

 

) is the value at time 

 

t

 

 of a diffusion process 

 

X

 

: namely that there
exists a measure of location, called the Òintrinsic location parameterÓ (ILP), which coincides with
mathematical expectation only in special cases, and which is invariant under change of coordinate
systems. The construction uses martingales with respect to the intrinsic geometry of diffusion pro-
cesses, and the heat flow of harmonic mappings. We compute formulas which could be useful to stat-
isticians, engineers, and others who use diffusion process models; these have immediate application,
discussed in a separate article, to the construction of an intrinsic nonlinear analog to the Kalman Fil-
ter. We present here a numerical simulation of a nonlinear SDE, showing how well the ILP formula
tracks the mean of the SDE for a Euclidean geometry.

 

RESUME: 

 

Pour une  fonction non lin�aire Ä dÕun vecteur al�atoire,  et  sont
usuellement diff�rents. Par cons�quent, lÕesp�rance math�matique de 

 

Y

 

 nÕest pas intrins�que: quand
nous changeons le syst�me des coordonn�es, elle nÕest pas invariante. Cet article concerne une pro-
pri�t� fondamentale, neglig�e jusquÕ� maintenant, des vecteurs al�atoires de la forme ,
o� 

 

X

 

(

 

t

 

) est la valeur au temps 

 

t

 

 dÕun processus de diffusion 

 

X

 

: cÕest � dire quÕil existe une mesure de
position, nomm�e le Òparam�tre intrins�que de centrageÓ (PIC), qui coincide avec lÕesp�rance
math�matique seulement dans des cas sp�cifiques, et qui est invariante par changement du syst�me
des coordonn�es. La construction utilise des martingales en rapport avec la g�ometrie intrins�que des
processus de diffusion, et le flot de chaleur des applications harmoniques. Nous calculons des for-
mules qui peuvent �tre utiles aux statisticiens, aux ing�nieurs, et � toute autre personne qui utilise des
mod�les fond�s sur des processus de diffusion; ces formules se mettent en service � la construction
dÕune analogue non lin�aire intrins�que du filtre de Kalman, discut�e dans un autre article. Nous
pr�sentons ici une simulation num�rique dÕune EDS non lin�aire, qui montre la pr�cision avec laque-
lle la formule de PIC suit la moyenne de lÕEDS pour une g�ometrie Euclid�enne.
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2 Technical Overview

 

1 Technical Overview

 

Suppose 

 

X

 

 is a Markov diffusion process on , or more generally on a manifold 

 

N

 

. The diffusion 

variance of 

 

X

 

 induces a semi-definite metric  on the cotangent bundle, a version of the Levi-Civita 

connection 

 

Γ

 

, and a Laplace-Beltrami operator 

 

∆

 

. We may treat 

 

X

 

 as a diffusion on 

 

N

 

 with generator 

, where 

 

ξ

 

 is a vector field.

For sufficiently small ,  has an Òintrinsic location parameterÓ, defined to be the non-random 

initial value  of a 

 

Γ

 

-martingale 

 

V 

 

terminating at . It is obtained by solving a system of forward-

backwards stochastic differential equations (FBSDE): a forward equation for 

 

X

 

, and a backwards 

equation for 

 

V

 

. This FBSDE is the stochastic equivalent of the heat equation (with drift 

 

ξ

 

) for harmonic 

mappings, a well-known system of quasilinear PDE. 

Let  be the flow of the vector field 

 

ξ

 

, and let . Our main result is 

that  can be intrinsically approximated to first order in  by 

where . This is computed in local coordinates. More generally, 

we find an intrinsic location parameter for , if  is a  map into a Riemannian 

manifold 

 

M

 

. 

 

We also treat the case where  is random.

 

2

 

Geometry Induced by a Diffusion Process

2.1 Diffusion Process Model

 

Consider a Markov diffusion process  with values in a connected manifold 

 

N

 

 of dimension 

 

p

 

, represented in coordinates by 

,

 

(1)

 

where  is a vector field on 

 

N

 

, , and 

 

W

 

 is a Wiener process in 

.We assume for simplicity that the coefficients ,  are  with bounded first derivative.

 

2.2 The diffusion variance semi-definite metric

 

Given a stochastic differential equation of the form (1) in each chart, it is well known that one may 

define a  semi-definite metric  on the cotangent bundle

 

, 

 

which we call the 

 

diffusion variance 

semi-definite metric, 

 

by the formula

.

 

(2)

R
p

. .〈 | 〉

ξ 1 2⁄( ) ∆+

δ 0> Xδ
V0 Xδ

φt:N N→ t 0≥,{ } xt φt x0( ) N∈≡
expxδ

1–
V0 Txδ

N

∇ dφδ x0( ) Πδ( ) φδ t–( )
*

∇ dφt x0( )( ) Π td
0

δ
∫–

Π t φ s–( )
*

. .〈 | 〉 xs
sd

0

t
∫ Tx0

N Tx0
N⊗∈=

ψ Xδ( ) ψ:N M→ C
2

X0

Xt t 0≥,{ }

dXt
i

b
i

Xt( ) dt σj
i

Xt( ) dWt
j

j 1=

p

∑+=

b
i

xi∂
∂∑ σ x( ) σj

i
x( )( ) L R

p
TxN;( )∈≡

R
p

b
i σj

i
C

2

C
2

. .〈 | 〉

dx
i
dx

k〈 | 〉 x σ σ⋅( ) ik
x( ) σj

i
x( ) σj

k
x( )

j 1=

p

∑≡ ≡
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Note that  may be degenerate. This semi-definite metric is actually intrinsic: changing coordinates 

for the diffusion will give a different matrix , but the same semi-definite metric. We postulate:

Axiom A: The appropriate metric for the study of X is the diffusion variance semi-definite metric, not 

the Euclidean metric.

The  matrix  defined above induces a linear transformation , 

namely

. 

Let us make a constant-rank assumption, i.e. that there exists a rank r vector bundle , a sub-

bundle of the tangent bundle, such that  for all . In Section 7 below, 

we present a global geometric construction of what we call the canonical sub-Riemannian connec-

tion  for , with respect to a generalized inverse g, i.e. a vector bundle isomorphism 

 such that

. (3)

In local co�rdinates,  is expressed by a Riemannian metric tensor , such that if 

, then

. (4)

The Christoffel symbols  for the canonical sub-Riemannian connection are specified by (83) 

below. The corresponding local connector  can be written in the more 

compact notation:

, (5)

where  is a 1-form, acting on the tangent vector w.

2.3 Intrinsic Description of the Process

The intrinsic version of (1) is to describe X as a diffusion process on the manifold N with generator

(6)

where ∆ is the (possibly degenerate) Laplace-Beltrami operator associated with the diffusion variance, 

and ξ is a vector field, whose expressions in the local coordinate system  are as follows:

, . (7)

Note that  has been specified by (2) and (5).

. .〈 | 〉
σj

i( )

p p× σ σ⋅( ) i j( ) α x( ) :Tx
∗ N TxN→

α x( ) dx
i( ) σ σ⋅( ) i j∂ ∂xj⁄∑≡

E N→
Ex range σ x( )( ) TxN⊆= x N∈

∇° . .〈 | 〉
g:TN T∗ N→

α x( ) g x( )• α x( )• α x( )=

g x( ) grs( )
α i j σ σ⋅( ) i j≡

α ir
grsα

sj

r s,
∑ α i j

=

Γ i j
s{ }

Γ x( ) L TxR
p

TxR
p⊗ TxR

p
;( )∈

2g Γ x( ) u v⊗( )( ) w⋅ D g v( ) g w( )〈 | 〉 u( ) D g w( ) g u( )〈 | 〉 v( ) D g u( ) g v( )〈 | 〉 w( )–+=

g Γ x( ) u v⊗( )( )

L ξ 1
2
---∆+≡

x
1

É x
p, ,{ }

∆ σ σ⋅( ) i j
Dij Γ i j

k
Dk

k
∑–{ }

i j,
∑= ξ b

k 1
2
--- σ σ⋅( ) i jΓ i j

k

i j,
∑+{ } Dk

k
∑=

σ σ⋅( ) i jΓ i j
k∑



4 G-Martingales

3 Γ-Martingales

Let  be a connection on a manifold M. An  Γ-martingale is a kind of continuous semimartingale 

on M which generalizes the notion of continuous  martingale on : see Emery [15] and Darling 

[7]. We summarize the main ideas, using global coordinates for simplicity. 

Among continuous semimartingales in , It�Õs formula shows that local martingales are character-

ized by

, , (8)

where  is the differential of the joint quadratic variation process of  and , and  

refers to the space of real-valued, continuous local martingales (see Revuz and Yor [24]). For vector 

fields ξ, ζ on , and , the smooth one-forms, a connection Γ gives an intrinsic way of 

differentiating ω along ξ to obtain

.

 is also written . When , this gives the Hessian

where the  are the Christoffel symbols. The intrinsic, geometric restatement of (8) is to charac-

terize a Γ−martingale X by the requirement that

, . (9)

This is equivalent to saying that  for , where

. (10)

If N has a metric g with metric tensor , we say that X is an  Γ-martingale if (9) holds and also

. (11)

The Γ-martingale Dirichlet problem, which has been studied by, among others, Emery [14], Kendall 

[18], [19], Picard [22], [23], Arnaudon [1], Darling [6], [7], and Thalmaier [27], [28], is to construct 

a Γ-martingale, adapted to a given filtration, and with a given terminal value; for the Euclidean con-

nection this is achieved simply by taking conditional expectation with respect to every σ-field in the fil-

tration, but for other connections this may be as difficult as solving a system of nonlinear partial 

differential equations, as we shall now see.

Γ H
2

L
2

R
q

R
q

f Xt( ) f X0( )– 1 2⁄( ) D
2
f Xs( )

0

t
∫ dX dX⊗( ) s– Mloc

c∈ f∀ C
2

R
q( )∈

dX dX⊗( ) i j
X

i
X

j
Mloc

c

R
q ω Ω1

R
q( )∈

∇ ξω Ω1
R

q( )∈

∇ ξω ζ⋅ ∇ω ξ ζ⊗( ) ω df=

∇ df Dk Di⊗( ) Dkif Γki
j

Djf
j

∑–=

Γ jk
i{ }

f Xt( ) f X0( )– 1 2⁄( ) ∇ df Xs( )
0

t
∫ dX dX⊗( ) s– Mloc

c∈ f∀ C
2

R
q( )∈

M
k

Mloc
c∈ k 1 É p, ,=

dMt
k

dXt
k 1 2⁄( ) Γ i j

k
Xt( )

i j,
∑ d X

i
X

j,〈 〉 t+=

gij( ) H
2

E X X,〈 〉 ∞ E gij Xt( )
i j,
∑ d X

i
X

j,〈 〉 t
0

∞
∫ ∞<≡
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4 Taylor Approximation of a Gamma-Martingale Dirichlet Problem

4.1 Condition for the Intrinsic Location Parameter

Consider a diffusion process  on a p-dimensional manifold N with generator  

where ∆ is the Laplace-Beltrami operator associated with the diffusion variance, and ξ is a vector field, 

as in (7). The coordinate-free construction of the diffusion X, given a Wiener process W on , uses 

the linear or orthonormal frame bundle: see Elworthy [13] p. 252. We suppose . 

Also suppose  is a Riemannian manifold, with Levi-Civita connection , and  is a 

 map. The case of particular interest is when , , and the metric on N is a 

Ògeneralized inverseÓ to  in the sense of (4). The general case of  is needed in the 

context of nonlinear filtering: see Darling [8]. 

Following Emery, and Mokobodzki [16], we assert the following:

Axiom B: Any intrinsic location parameter for  should be the initial value  of an -

adapted  -martingale  on M, with terminal value .

This need not be unique, but we will specify a particular choice below. In the case where  

does not depend on x, then the local connector Γ, given by (5), is zero, and  is simply . 

However our assertion is that, when Γ is not the Euclidean connection, the right measure of location 

is , and not . We begin by indicating why an exact determination of  is not compu-

tationally feasible in general.

4.2 Relationship with Harmonic Mappings

For simplicity of exposition, let us assume that there are diffeomorphisms  and  

which induce global coordinate systems  for N and  for M, respectively. By 

abuse of notation, we will usually neglect the distinction between  and , and write x 

for both.  is given by (2) and (5), and the local connector 

 comes from the Levi-Civita connection for .

In order to find , we need to construct an auxiliary adapted process , with values in 

, such that the processes and  satisfy the following system of forward-

backwards SDE:

, ; (12)

, . (13)

We also require that

. (14)

Xt 0 t δ≤ ≤,{ } ξ 1
2
---∆+

R
p

X0 x0 N∈=

M h,( ) Γ ψ:N M→
C

2
M N= ψ identity=

σ σ⋅ ψ:N M→

ψ Xδ( ) V0 ℑ t
W{ }

H
2 Γ Vt 0 t δ≤ ≤,{ } Vδ ψ Xδ( )=

σ σ⋅ x( )
V0 E ψ Xδ( )[ ]

V0 E ψ Xδ( )[ ] V0

ϕ :N R
p→ ϕ:M R

q→
x

1
É x

p, ,{ } y
1

É y
q, ,{ }

x N∈ ϕ x( ) R
p∈

Γ x( ) σ σ⋅( ) x( )( ) TxR
p∈

Γ y( ) L TyR
q

TyR
q⊗ TyR

q
;( )∈ M h,( )

Vt{ } Zt{ }
L R

p
TVt

R
q

; 
  Xt{ } Vt Zt,( ){ }

Xt x0 b Xs( ) ds
0

t
∫ σ Xs( ) dWs0

t
∫+ += 0 t δ≤ ≤

Vt ψ Xδ( ) Zs Wsd
t

δ
∫–

1
2
--- Γ Vs( ) Zs Zs⋅( ) sd

t

δ
∫+= 0 t δ≤ ≤

E hij Vs( ) Zs Zs⋅( ) i j

i j,
∑ ds

0

δ
∫ ∞<
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[Equation (13) and condition (14) together say that V is an  -martingale, in the sense of (10) 

and (11).] Such systems are treated by Pardoux and Peng [21], but existence and uniqueness of solu-

tions to (13) are outside the scope of their theory, because the coefficient  is not Lipschitz 

in z.

However consider the second fundamental form  of a  mapping . Recall that 

 may be expressed in local coordinates by:

(15)

for , . Let ξ be as in (7). Consider a system of quasilinear parabolic 

PDE (a Òheat equation with driftÓ for harmonic mappings - see Eells and Lemaire [11], [12]) consist-

ing of a suitably differentiable family of mappings , for , such that

, , (16)

. (17)

For , the right side of (16) is . Following 

the approach of Pardoux and Peng [21], It�Õs formula shows that

, (18)

(19)

solves (13). In particular . (A similar idea was used by Thalmaier [27].)

4.2.a Comments on the Local Solvability of (16) - (17)

Recall that the energy density of  is given by 

. (20)

Note, incidentally, that this formula still makes sense when  is degenerate. In the case where 

 is non-degenerate and smooth, , and , the inverse function theorem 

method of Hamilton [17], page 122, suffices to show existence of a unique smooth solution to (16) - 

(17) when  is sufficiently small. For a more detailed account of the properties of the solutions 

when , see Struwe [26], pages 221 - 235. Whereas Eells and Sampson [10] showed the 

existence of a unique global solution when  has non-positive curvature, Chen and Ding [4] 

showed that in certain other cases blow-up of solutions is inevitable. The case where  is degener-

ate appears not to have been studied in the literature of variational calculus, and indeed is not within 

the scope of the classical PDE theory of Ladyzenskaja, Solonnikov, and UralÕceva [20]. A probabilistic 

construction of a solution, which may or may not generalize to the case where  is degenerate, 

H
2 Γ

Γ v( ) z z⋅( )

∇ dφ C
2 φ:N M→

∇ dφ x( ) L TxN TxN⊗ Tφ x( ) M;( )∈

∇ dφ x( ) v w⊗( ) D
2φ x( ) v w⊗( ) Dφ x( ) Γ x( ) v w⊗( )– Γ y( ) Dφ x( ) v Dφ x( ) w⊗( )+=

v w,( ) TxR
p

TxR
p×∈ y φ x( )≡

u t .,( ) :N M→{ } t 0 δ,[ ]∈

t∂
∂u du ξ⋅ 1

2
--- ∇ du σ σ⋅( )+= 0 t δ≤ ≤

u 0 .,( ) ψ=

x N∈ du t .,( ) ξ x( )⋅ 1
2
--- ∇ du t .,( ) σ σ⋅ x( )( )+ Tu t x,( ) M∈

Vt u δ t– Xt,( ) M∈=

Z t( ) du δ t– Xt,( ) σ Xt( )• L R
p

TVt
M; 

 ∈=

u δ x0,( ) V0=

ψ:N M→

e ψ( ) x( ) 1
2
--- dψ dψ⊗ σ σ⋅( ) ψ x( )

2≡ 1
2
--- hβγ ψ x( )( ) dψβ

x( ) dψγ
x( )⊗ σ σ⋅ x( )( )

β γ,
∑=

σ σ⋅
σ σ⋅ ξ 0= e ψ( ) volN( )d∫ ∞<

δ 0>
dim N( ) 2=

M h,( )
σ σ⋅

σ σ⋅
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will appear in Thalmaier [28]. Work by other authors, using H�rmander conditions on the generator 

, is in progress. For now we shall merely assume:

Hypothesis I Assume conditions on ξ, , ψ, and h sufficient to ensure existence and unique-

ness of a solution , for some .

4.3 Definition: the Intrinsic Location Parameter

For , the intrinsic location parameter of  is defined to be , where .

This depends upon the generator , given in (7), where ∆ may be degenerate; on the mapping 

; and on the metric h for M. It is precisely the initial value of an -adapted  -

martingale on M, with terminal value . However by using the solution of the PDE, we 

force the intrinsic location parameter to be unique, and to have some regularity as a function of .

The difficulty with Definition 4.3 is that, in filtering applications, it is not feasible to compute solutions 

to (16) and (17) in real time. Instead we compute an approximation, as we now describe.

4.4 A Parametrized Family of Heat Flows

Consider a parametrized family  of equations of the type (16), namely 

, , (21)

. (22)

Note that the case  gives the system (16), while the case  gives , 

where  is the flow of the vector field ξ. 

In a personal communication, Etienne Pardoux has indicated the possibility of a probabilistic con-

struction, involving the system of FBSDE (46) and (55), of a unique family of solutions  for suffi-

ciently small , and for small time , based on the results of Darling [6] and methods of 

Pardoux and Peng [21]. For now, it will suffice to replace Hypothesis I by the following:

Hypothesis II Assume conditions on ξ, , ψ, and h sufficient to ensure existence of  and 

 such that there is a unique  mapping  from 

 to M satisfying (21) and (22) for each .

4.4.a Notation

For any vector field ζ on N, and any differentiable map  into a manifold P, the Òpush-for-

wardÓ  takes the value  at ; likewise .

We must also assume for the following theorem that we have chosen a generalized inverse 

 to , in the sense of (3), so that we may construct a canonical sub-Riemannian 

connection  for , with respect to g.

We now state the first result, which will later be subsumed by Theorem 4.7.

ξ 1
2
---∆+

σ σ⋅
u t .,( ) :N M→ 0 t δ1≤ ≤,{ } δ 1 0>

0 δ δ1≤ ≤ ψ Xδ( ) u δ x0,( ) x0 X0=

ξ 1
2
---∆+

ψ:N M→ ℑ t
W{ } H

2 Γ
Vδ ψ Xδ( )=

x0

u
γ 0 γ 1≤ ≤,{ }

t∂
∂u

γ
du

γ ξ⋅ γ
2
--- ∇ du

γ σ σ⋅( )+= 0 t δ≤ ≤

u
γ 0 .,( ) ψ=

γ 1= γ 0= u
0

t x,( ) ψ φt x( )( )=

φt t 0≥,{ }

u
γ{ }

γ 0≥ δ 0>

σ σ⋅ δ1 0>
γ1 0> C

2 γ t x, ,( ) u
γ

t x,( )→
0 γ1,[ ] 0 δ1,[ ]× N× γ 0 γ1,[ ]∈

φ:N P→
φ*ζ dφ ζ x( )⋅ TyP∈ y φ x( ) P∈≡ φ* ζ ζ′⊗( ) φ*ζ φ*ζ′⊗≡

g:T∗ N TN→ σ σ⋅
∇° . .〈 | 〉
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4.5 Theorem (PDE Version)

Assume Hypothesis II, and that . Then, in the tangent space ,

(23)

where  is the flow of the vector field ξ, , and

. (24)

In the special case where , , and , the right side of (23) simplifies to the 

part in parentheses {É}.

4.5.a Definition

The expression (23) is called the approximate intrinsic location parameter in the tangent space 

, denoted .

4.5.b Remark: How the Formula is Useful

First we solve the ODE for the flow  of the vector field ξ, compute  at 

 using (23) (or rather, using the local coordinate version (32)), then use the exponential map to 

project the approximate location parameter on to N, giving

. (25)

Computation of the exponential map likewise involves solving an ODE, namely the geodesic flow on 

M. In brief, we have replaced the task of solving a system of PDE by the much lighter task of solving 

two ODEÕs and performing an integration.

4.6 The Stochastic Version

We now prepare an alternative version of the Theorem, in terms of FBSDE, in which we give a local 

coordinate expression for the right side of (23). In this context it is natural to define a new parameter 

ε, so that  in (21). Instead of X in (12), we consider a family of diffusion processes 

 on the time interval , where  has generator . Likewise V in (13) will 

be replaced by a family  of  -martingales, with , and 

. Note, incidentally, that such parametrized families of -martingales are also 

treated in recent work of Arnaudon and Thalmaier [2], [3].

4.6.a Generalization to the Case of Random Initial Value

Suppose that, instead of  as in (12), we have , where  is a zero-

mean random variable in , independent of W, with covariance ; the last 

expression means that, for any pair of cotangent vectors , 

0 δ δ1≤ ≤ Tψ xδ( ) M

γ∂
∂ u

γ δ x0,( )
γ 0=

∇ dψ xδ( ) φδ*
Π

δ
( ) ψ* ∇° dφδ x0( ) Πδ( ) φδ t–( )

*
∇° dφt x0( ) Π td

0

δ
∫–{ }+

2
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

φt t 0≥,{ } xt φt x0( )≡

Π t φ s–( )
*

. .〈 | 〉 xs
sd

0

t
∫ Tx0

N Tx0
N⊗∈≡

M N= ψ identity= h g=

Tψ xδ( ) M Ix0
ψ Xδ( )[ ]

φt 0 t δ≤ ≤,{ } ∂ u
γ δ x0,( ) ∂γ⁄

γ 0=

expψ xδ( ) γ∂
∂ u

γ δ x0,( )
γ 0=

{ } M∈

γ ε2
=

X
ε ε 0≥,{ } 0 δ,[ ] X

ε ξ ε2∆ 2⁄+

V
ε ε 0≥,{ } H

2 Γ Vδ
ε ψ Xδ

ε( )=

V0
γ

u
γ δ x0,( )= Γ

X0 x0 N∈= X0 expx0
U0( )= U0

Tx0
N Σ0 Tx0

N Tx0
N⊗∈

β λ, Tx0

*
N∈
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.

Now set up the family of diffusion processes  with initial values

. (26)

Each -martingale is now adapted to the larger filtration . 

In particular,

is now a random variable in  depending on .

4.6.b Definition

In the case of a random initial value  as above, the approximate intrinsic location parameter of 

 in the tangent space , denoted , is defined to be

. (27)

We will see in Section 6.3 below that this definition makes sense. This is the same as

,

and coincides with , given by (23), in the case where .

4.6.c Some Integral Formulas

Given the flow  of the vector field ξ, the derivative flow is given locally by

, (28)

where , for . In local coordinates, we compute  as a  matrix, given by

.

Introduce the deterministic functions

, (29)

. (30)

Note, incidentally, that  could be called the intrinsic variance parameter of .

E β U0⋅( ) λ U0⋅( )[ ] β λ⊗( ) Σ0⋅=

X
ε ε 0≥,{ }

X0
ε

expx0
εU0( )=

Γ Vt
ε 0 t δ≤ ≤,{ } ℑ ˜

t
W

{ } ℑ t
W σ U0( )∨{ }≡

expψ xδ( )
1–

V0
ε

Tψ xδ( ) M U0

X0
ψ Xδ( ) Tψ xδ( ) M Ix0 Σ0, ψ Xδ( )[ ]

ε2( )∂

∂ E expψ xδ( )
1–

V0
ε

ε 0=

γ∂
∂ E expψ xδ( )

1–
u

γ δ X0
γ, 

 

γ 0=

Ix0
ψ Xδ( )[ ] Σ0 0=

φt 0 t δ≤ ≤,{ }

τs
t

d φt φs
1–•( ) xs( ) L Txs

N Txt
N;( )∈≡

xs φs x( )= 0 s δ≤ ≤ τs
t

p p×

τs
t

exp Dξ xu( ) ud
s

t
∫{ }=

χt φt s–( )
*

. .〈 | 〉 xs
sd

0

t
∫≡ τs

t σ σ⋅( ) xs( ) τs
t( )

T
sd

0

t
∫ Txt

N Txt
N⊗∈=

Ξt χt τ0
t Σ0 τ0

t( )
T

+ Txt
N Txt

N⊗∈≡

Ξt Xt
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4.7 Theorem (Local Co�rdinates, Random Initial Value Version)

Under the conditions of Theorem 4.5, with random initial value  as in Section 4.6.a, the approxi-

mate intrinsic location parameter  exists and is equal to the right side of (23), after 

redefining

. (31)

In local coordinates,  is given by

(32)

where , , and  is given by (30).

4.7.a Remarks

• Theorem 4.7 subsumes Theorem 4.5, which corresponds to the case .

• In the special case where , , and , formula (32) reduces to:

. (33)

• In the filtering context [8], formulas (32) and (33) are of crucial importance.

5 Example of Computing an Intrinsic Location Parameter

The following example shows that Theorem 4.7 leads to feasible and accurate calculations.

5.1 Target Tracking

In target tracking applications, it is convenient to model target acceleration as an Ornstein-Uhlenbeck 

process, with the constraint that acceleration must be perpendicular to velocity. Thus 

 must satisfy , and the trajectory must lie within a set on which  is con-

stant. Therefore we may identify the state space N with , since the v-component lies on a 

sphere, and the a-component is perpendicular to v, and hence tangent to .

Within a Cartesian frame, X is a process in  with components V (velocity) and A (acceleration), and 

the equations of motion take the nonlinear form:

. (34)

Here the square matrix consists of four  matrices, λ and γ are constants, W is a three-dimen-

sional Wiener process, and if ,

, (35)

X0
Ix0 Σ0, ψ Xδ( )[ ]

Π t Σ0 φ s–( )
*

. .〈 | 〉 xs
sd

0

t
∫+ Tx0

N Tx0
N⊗∈≡

2Ix0 Σ0, ψ Xδ( )[ ]

J τ t
δ

D
2ξ xt( ) Ξt( ) Γ xt( ) σ σ⋅ xt( )( )–[ ] td

0

δ
∫ D

2ψ xδ( ) Ξδ( ) Jτ0
δΓ x0( ) Σ0( )– Γ yδ( ) JΞδJ

T( )+ +

yδ ψ xδ( )≡ J Dψ xδ( )≡ Ξt

Σ0 0=

M N= ψ identity= h g=

Ix0 Σ0, Xδ[ ] 1
2
--- τ t

δ
D

2ξ xt( ) Ξt( ) Γ xt( ) σ σ⋅ xt( )( )–[ ] td
0

δ
∫ τ0

δΓ x0( ) Σ0( )– Γ xδ( ) Ξδ( )+{ }=

v a,( ) R
3

R
3×∈ v a⋅ 0= v

2

TS
2

R
6⊂

S
2

R
6

dV
dA

03 3× I3
ρ X( ) I3– λP V( )–

V
A

dt 0
γP V( ) dW t( )

+=

3 3×
x

T
v

T
a

T,( )≡

ρ x( ) a
2

v
2⁄≡
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, (36)

Note that  is precisely the projection onto the orthogonal complement of v in , and  has 

been chosen so that . 

5.2 Geometry of the State Space

The diffusion variance metric (2) is degenerate here; noting that , we find

. (37)

The rescaled Euclidean metric  on  is a generalized inverse to α in the sense of (3), since 

. We break down a tangent vector ζ to  into two 3-dimensional components  and . 

The constancy of  implies that

. (38)

Referring to formula (5) for the local connector ,

, .

Taking first and second derivatives of the constraint , we find that

, . (39)

Using the last identity, we obtain from (5) the formula

, . (40)

In order to compute (32), note that, in particular,

. (41)

5.3 Derivatives of the Dynamical System

It follows from (7), (34), and (41) that the formula for the intrinsic vector field ξ is:

P v( ) I vv
T

v
2---------– L R

3
R

3
;( )∈≡

P v( ) R
3 ρ x( )

d V A⋅( ) 0=

P
2

P=

α σ σ⋅
03 3× 03 3×

03 3× γ2
P v( )

≡ ≡

g γ 2–
I6= R

6

P
2

P= R
6 ζv ζa

v
2

DP v( ) ηv
1–

v
2--------- ηvv

T
vηv

T
+{ }=

Γ x( )

D g ζ( ) g ς( )〈 | 〉 η( ) 1–

γ2
v

2---------------ζa
T ηvv

T
vηv

T
+( ) ςa= ζ ς η, ,( ) TxN TxN× TxN×∈

v a⋅ 0=

ζa
T
v ζv

T
a+ 0= ηa

Tζv ηv
Tζa+ 0=

Γ x( ) ζ ς⊗( ) S ζ ς⊗( ) v

2 v
2--------------------------= S ζ ς⊗( )

ζaςa
T ςaζa

T
+

ζvςa
T

– ςvζa
T

–

≡

Γ x( ) σ σ⋅ x( )( ) γ2

v
2--------- P v( )

0
v 0

0
= =
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. (42)

Differentiate under the assumptions  is constant and , to obtain

, . (43)

Differentiating (43) and using the identities (39),

. (44)

5.3.a Constraints in the Tangent Space of the State Manifold

Let us write a symmetric tensor  in  blocks as the matrix

,

where . Replacing  by , and  by , etc., in (44), we find that

. (45)

5.4 Ingredients of the Intrinsic Location Parameter Formula

Let  be the inclusion of the state space  into Euclidean . Thus in formula (32), 

the local connector  is zero on the target manifold, J is the identity, and  is zero. When  

is taken to be zero, the formula for the approximate intrinsic location parameter  for  

becomes:

, 

where  and  are the velocity and acceleration components of , for , and  

and  are given by (28) and (29). A straightforward integration scheme for calculating  

at the same time, using a discretization of , is:

,

,

ξ x( ) a
ρ x( ) v– λP v( ) a–

=

v
2

v a⋅ 0=

Dξ x( ) ζ( ) 0 I
λQ ρ– λP– 2Q–

ζv

ζa

= Q va
T

v
2---------≡

D
2ξ x( ) η ζ⊗( ) 2–

v
2---------

0

ηa
Tζav ζvηa

T ηvζa
T

+( ) a+
=

χ TxN TxN⊗∈ 3 3×

χvv χva

χav χaa

χav
T χva= ηvζa

T χva ηa
Tζa Tr χaa( )

D
2ξ x( ) χ( ) 2–

v
2---------

0
Tr χaa( ) v χva χav+( ) a+

=

ψ:N R
6→ N TS

2≅ R
6

Γ .( ) D
2ψ Σ0
mδ Ix0

Xδ[ ]≡ Xδ

mt τu
t
Hu ud

0

t
∫= Ht

1–

v0
2------------

0
Tr χaa t( )( ) vt χva t( ) χav t( )+( ) at+

≡

vt at xt φt x( )≡ 0 t δ≤ ≤ τu
t

χt τu
t χt mt, ,( )

0 δ,[ ]

τu
t

exp t u–
2

----------- Dξ xu( ) Dξ xt( )+[ ]{ }≈

χt
t u–

2
----------- σ σ⋅( ) xt( ) τu

t χu
t u–

2
----------- σ σ⋅( ) xu( )+ τu

t( )
T

+≈
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.

Since the local connector is zero on the target manifold, geodesics are simply straight lines, and 

 is a suitable estimate of the mean position of .

5.5 Simulation Results

FIGURE  1 SIMULATIONS OF THE MEAN OF AN SDE, VERSUS ITS APPROXIMATE ILP

We created  simulations of the process (34), with  and , on the time inter-

val , which was discretized into 25 subintervals for integration purposes. In each case V and A 

were initialized randomly, with magnitudes of 200 m/s and 50 m/s2, respectively. The plot shows the 

x-component of acceleration (the other two are similar): the Ò+Ó signs represent the mean of the pro-

cess (34) over  simulations , with bands showing plus and minus one standard error, the solid line 

is the solution  of the discretized ODE , and the circles denote the 

approximate intrinsic location parameter (ILP). The reader will note that the ILP tracks the mean of 

the process better than the ODE does.

mt τu
t

mu
t u–

2
-----------Hu+

t u–
2

-----------Ht+≈

xδ Ix0
Xδ[ ]+ Xδ

0 5 10 15 20 25
-12

-10

-8

-6

-4

-2

0

2
x-acceleration: ODE "-", mean SDE +/- 1 s.e. "+", ILP "o"

104 λ 0.5= γ 5.2 103×=

0 1,[ ]

104

xt 0 t 1≤ ≤,{ } dxt dt⁄ ξ xt( )=
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6 Proofs of Theorem 4.7

The strategy of the proof will be to establish the formula (32) using It� calculus, and then to show it is 

equivalent to (23) using differential geometric methods. While this may seem roundabout, the impor-

tant formula for applications is really (32); converting it into (23) serves mainly as a check that for-

mula (32) is indeed intrinsic. It will make no difference if we work in global coordinates, and identify N 

with  and M with . 

6.1 Step I: Differentiation of the State Process with Respect to a Parameter

We consider a family of diffusion processes  on the time interval , with initial values 

; here  is a zero-mean random variable in , independent of W, with covari-

ance , and  has generator .

Note that, in local coordinates, the SDE for  is not Ò Ò, because the 

limiting case when  would then be the ODE based on the vector field , which is not the 

same as ξ, which is given by (7). Instead the SDE is

(46)

where we use the notation

. (47)

In the case , the solution is deterministic, namely . Note that, in local co�rdi-

nates,

.

It is well known that, if the vector field ξ and the semi-definite metric  are sufficiently differentia-

ble, then the stochastic processes  and  exist and satisfy the following SDEs:

(48)

;

(49)

R
p

R
q

X
ε ε 0≥,{ } 0 δ,[ ]

X0
ε

expx0
εU0( )= U0 Tx0

N

Σ0 Tx0
N Tx0

N⊗∈ X
ε ξ ε2∆ 2⁄+

X
ε

dXs
ε

b Xs
ε( ) ds εσ Xs

ε( ) dWs+=

ε 0= b
i
Di∑

Xt
ε

expx0
εU0( ) ξ Xs

ε( ) ds
0

t
∫ ε2 ζ Xs

ε( ) ds
0

t
∫– εσ Xs

ε( ) dWs0

t
∫+ +=

ζ x( ) 1
2
---Γ x( ) σ x( ) σ x( )⋅( )≡

ε 0= xt 0 t δ≤ ≤,{ }

expx0
εU0( ) x0 εU0

ε2

2
-----Γ x0( ) U0 U0⊗( )– o ε2( )+ +=

. .〈 | 〉
∂X

ε ∂ε⁄ ∂2
X

ε ∂ε2⁄

ε∂
∂Xt

ε

U0 Dξ Xs
ε( ) ε∂

∂Xs
ε

 
 
 

ds
0

t
∫ σ Xs

ε( ) dWs0

t
∫+ +=

 2ε ζ Xs
ε( ) ds

0

t
∫– ε Dσ Xs

ε( ) ε∂
∂Xs

ε

 
 
 

dWs0

t
∫ O ε2( )+ +

ε2

2

∂

∂ Xt
ε

Γ x( ) U0 U0⊗( )– D
2ξ Xs

ε( ) ε∂
∂Xs

ε

ε∂
∂Xs

ε

⊗ 
 
 

ds
0

t
∫ Dξ Xs

ε( )
ε2

2

∂

∂ Xs
ε

 
 
 
 

ds
0

t
∫ 2 ζ Xs

ε( ) ds
0

t
∫–+ +=
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,

where  denotes terms of order ε. Define

, . (50)

Now (48) and (49) give:

, ; (51)

, (52)

,

where . Let  be the two-parameter semigroup of deterministic matrices 

given by (28), so that

; .

Then (51) becomes , which has a Gaussian solution

. (53)

Likewise (52) gives , whose 

solution is

. (54)

6.2 Step II: Differentiation of the Gamma-Martingale with Respect to a Parameter

Consider the pair of processes  obtained from (18) and (19), where u is replaced by . As 

in the case where ,  gives an adapted solution to the backwards equation correspond-

ing to (13), namely

.

However the version of (19) which applies here is , so we may replace 

 by , and the equation becomes

 2 Dσ Xs
ε( ) ε∂

∂Xs
ε

 
 
 

dWs0

t
∫ O ε( )+ +

O ε( )

Λt ε∂
∂Xt

ε

ε 0=

≡ Λt
2( )

ε2

2

∂

∂ Xt
ε

ε 0=

≡

dΛt AtΛtdt σ xt( ) dWt+= Λ0 U0=

dΛt
2( )

D
2ξ xt( ) Λt Λt⊗( ) AtΛt

2( ) 2ζ xt( )–+[ ] dt 2Dσ xt( ) Λt( ) dWt+=

Λ0
2( ) Γ x0( ) U0 U0⊗( )–=

At Dξ xt( )≡ τs
t 0 s t δ≤,≤,{ }

t∂
∂τ t

s

τ t
s
At–= τs

r τ t
rτs

t
=

d τ t
0Λt( ) τ t

0σ xt( ) dWt=

Λt τ0
t
U0 τ0

t τs
0σ xs( ) Wsd

0

t
∫+ τ0

t
U0 τs

t σ xs( ) Wsd
0

t
∫+= =

d τ t
0Λt

2( )( ) τ t
0

D
2ξ xt( ) Λt Λt⊗( ) 2ζ xt( )–[ ] dt 2τt

0
Dσ xt( ) Λt( ) dWt+=

Λt
2( ) τ0

t Γ x0( ) U0 U0⊗( )– τs
t

D
2ξ xs( ) Λs Λs⊗( ) 2ζ xs( )–[ ] ds 2Dσ xs( ) Λs( ) dWs+{ }

0

t
∫+=

V
ε

Z
ε,( ) u

ε

ε 1= V
ε

Z
ε,( )

Vt
ε ψ Xδ

ε( ) Zs
ε
dWst

δ
∫–

1
2
--- Γ Vs

ε( ) Zs
ε

Zs
ε⋅( ) sd

t

δ
∫+=

Zt
ε

Du
ε δ t– Xt,( ) εσ Xt( )=

Zs
ε εZs

ε
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. (55)

By the regularity of , it follows that , , , and  exist, and satisfy 

the following equations:

; (56)

. (57)

Note also that  for all . Take . By combining (53) and 

(56), we see that, if ,

; (58)

. (59)

Define

(60)

(61)

From (54) and (61) we obtain:

.

The expected value of a quadratic form  in an  random vector η is easily computed to 

be . In this case,

, 

where  is given by (29), so we obtain

Vt
ε ψ Xδ

ε( ) ε Zs
ε
dWst

δ
∫–

ε2

2
----- Γ Vs

ε( ) Zs
ε

Zs
ε⋅( ) sd

t

δ
∫+=

u
ε ∂V

ε ∂ε⁄ ∂Z
ε ∂ε⁄ ∂2

V
ε ∂ε2⁄ ∂2

Z
ε ∂ε2⁄

ε∂
∂Vt

ε

Dψ Xδ
ε( ) ε∂

∂Xδ
ε

 
 
 

Zs
ε
dWst

δ
∫– ε ε∂

∂Zs
ε

dWst

δ
∫– ε Γ Vs

ε( ) Zs
ε
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ε⋅( ) sd

t

δ
∫ O ε2( )+ +=

ε2

2

∂

∂ Vt
ε

Dψ Xδ
ε( )

ε2

2

∂

∂ Xδ
ε

 
 
 
 

D
2ψ Xδ

ε( ) ε∂
∂Xδ

ε

ε∂
∂Xδ

ε

⊗ 
 
 

2 ε∂
∂Zs

ε

dWst

δ
∫– Γ Vs

ε( ) Zs
ε

Zs
ε⋅( ) sd

t

δ
∫ O ε( )+ + +=

Vt
0

yδ ψ xδ( )≡= t 0 δ,[ ]∈ ℑ ˜
t
W

ℑ t
W σ U0( )∨≡

J Dψ xδ( )≡

Θt ε∂
∂Vt

ε

ε 0=

E JΛδ ℑ̃ t
W

Jτ0
δ
U0 J τs

δσ xs( ) Wsd
0

t
∫+= =≡

Zs
0

Jτs
δσ xs( )=

Θt
2( )

ε2

2

∂

∂ Vt
ε

ε 0=

≡

E JΛδ
2( )

D
2ψ xδ( ) Λδ Λδ⊗( ) Γ yδ( ) Zs

0
Zs

0⋅( ) sd
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δΓ x0( ) U0 U0⊗( )– JE τs

δ
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∫{ } U0+=

 E D
2ψ xδ( ) Λδ Λδ⊗( ) Γ yδ( ) Zs

0
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0⋅( ) sd
0
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∫+{ } U0+
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Aη Np µ Σ,( )
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η Λ s Np τ0
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χt

Θ0
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δ
D
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s
U0 τ0

s
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0

δ
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. (62)

6.3 Step III: A Taylor Expansion Using the Exponential Map

Let , and define . Referring to (27), we are seeking . It 

follows immediately from the geodesic equation that

, (63)

It follows from (58) and (62) that

.

A Taylor expansion based on (63) gives

.

Taking expectations, and recalling that  has mean zero and covariance , we 

obtain

It follows that , and hence that

where . If we write

, (64)

then the formula becomes

 D
2ψ xδ( ) χδ( ) D

2ψ xδ( ) τ0
δ
U0 τ0

δ
U0⊗( ) Γ yδ( ) JχδJ

T( )+ + +
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expyδ

1–
V0

ε
V0

ε
yδ–

1
2
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2ψ xδ( ) Σδ( ) Γ yδ( ) JΣδJ

T( )+ + + }

Σs τ0
s Σ0 τ0

s( )
T

≡

Ξs χs Σs+≡
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.

This establishes the formula (32). ×

6.4 Step IV: Intrinsic Version of the Formula

It remains to prove that (23), with  as in (31), is the intrinsic version of (32). We abbreviate here by 

writing  as . By definition of the flow of ξ,

,

and so, differentiating with respect to x, and exchanging the order of differentiation,

(65)

or, by analogy with (28), taking ,

; . (66)

Since , we have , which upon differentiation yields

,

which gives

; . (67)

A further differentiation of (65) when ψ is the identity yields

. (68)

Combining (67) and (68), we have

. (69)

The formula (15) for  can be written as

1
2
--- J τs

δ
D

2ξ xs( ) Ξs( )[ ] ds
0

δ
∫ D

2ψ xδ( ) Ξδ( ) Γ yδ( ) JΞδJ
T( )+ +{ }

 1
2
---J τs

δΓ xs( ) σ σ⋅ xs( )( ) ds
0

δ
∫ τ0

δΓ x0( ) Σ0( )+{ }–

Π t

ψ φt• ψ t

t∂
∂ ψt x0( ) dψ ξ• φt x0( )( )=

t∂
∂ Dψt x0( ) D

t∂
∂ ψt x0( ) 

 =

θs
t

Dψt s– xs( )≡ Dψ xt( ) D φt φs
1–•( ) xs( )• Dψ xt( ) τs

t
= =

t∂
∂τs

t

Dξ xt( ) τs
t

=
t∂

∂θs
t

Dψ xt( ) Dξ xt( ) τs
t•=

τ t
δτ0

t τ0
δ

= θt
δτ0

t
Dψ xδ( ) τ t

δτ0
t θ0

δ
= =

t∂
∂θt

δ

 
 
 

τ0
t θt

δ
t∂

∂τ0
t

 
 
 

– θt
δ
Dξ xt( ) τ0

t
–= =

t∂
∂τ t

δ

τ t
δ
Dξ xt( )–=

t∂
∂θt

δ

θt
δ
Dξ xt( )–=

t∂
∂ D

2φt x0( ) 
  v w⊗( ) D

2ξ xt( ) τ0
t
v τ0

t
w⊗( ) Dξ xt( ) D

2φt x0( ) v w⊗( )+=

t∂
∂ θt

δ
D

2φt x0( )( ) θt
δ
Dξ xt( ) D

2φt x0( )– θt
δ

D
2ξ xt( ) τ0

t
.( ) τ0

t
.( )⊗( ) Dξ xt( ) D

2φt x0( )+{ }+=

t∂
∂ θt

δ
D

2φt x0( )( ) v w⊗( ) θt
δ
D

2ξ xt( ) τ0
t
v τ0

t
w⊗( )=

∇° dφt
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(70)

It is clear that

.

Hence from (69) and (70) it follows that

. (71)

The last term in (71) can be written, using (66), as 

, (72)

for . We will replace  by

(73)

where . Observe that

. (74)

Moreover from (74) and (66), it is easily checked that 

. (75)

It follows from (71) - (75) that

.

∇° dφt x0( ) v w⊗( ) D
2φt x0( ) v w⊗( ) τ0

t Γ x0( ) v w⊗( )– Γ xt( ) τ0
t
v τ0

t
w⊗( )+=

t∂
∂ θt

δτ0
t Γ x0( )( )

t∂
∂ θ0

δΓ x0( )( ) 0= =

t∂
∂ ψδ t–( )

*
∇° dφt x0( ){ } v w⊗( )

t∂
∂ θt

δ
D

2φt x0( ) v w⊗( ) Γ xt( ) τ0
t
v τ0

t
w⊗( )+[ ]{ }=

θt
δ
D

2ξ xt( ) τ0
t
v τ0

t
w⊗( )

t∂
∂ θt

δΓ xt( ) τ0
t
v τ0

t
w⊗( ){ }+=

t∂
∂ θt

δΓ xt( ){ } τ 0
t
v τ0

t
w⊗( ) θt

δΓ xt( ) Dξ xt( ) τ0
t
v τ0

t
w⊗ τ 0

t
v Dξ xt( ) τ

0
t
w⊗+ 

 +

v w⊗ Tx0
N Tx0

N⊗∈ v w⊗

Π t τ t
0Ξt τ t

0( )
T

≡ Σ0 τs
0 σ σ⋅( ) xs( ) τs

0( )
T

sd
0

t
∫+ Tx0

N Tx0
N⊗∈=

Ξt χt τ0
t Σ0 τ0

t( )
T

+≡

τ0
t Π t τ0

t( )
T

Ξt= Txt
N Txt

N⊗∈

td

dΞt σ σ⋅( ) xt( ) Dξ xt( ) Ξt Ξt Dξ xt( ){ }
T

+ +=

t∂
∂ ψδ t–( )

*
∇° dφt x0( ) Π t( ){ } ψ δ t–( )

*
∇° dφt x0( )

td

dΠ t
 
 
 

–
t∂

∂ ψδ t–( )
*
∇° dφt x0( ){ } Π t( )=

θt
δ
D

2ξ xt( )
t∂

∂ θt
δΓ xt( ){ }+ Ξt( ) θt

δΓ xt( ) Dξ xt( ) Ξt Ξt Dξ xt( )( ) T
+[ ]+=

θt
δ
D

2ξ xt( )
t∂

∂ θt
δΓ xt( ){ }+ Ξt( ) θt

δΓ xt( )
td

dΞt σ σ⋅( ) xt( )– 
 
 

+=

θt
δ
D

2ξ xt( ) Ξt( ) θt
δΓ xt( ) σ σ⋅( ) xt( )( )–

t∂
∂ θt

δΓ xt( ) Ξt( ){ }+=
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Since , it follows upon integration from 0 to δ that in ,

. (76)

However the formula (15) for  can be written as

. (77)

where , and . We take , and add (76) and (77):

.

The equivalence of (23) and (32) is established, completing the proofs of Theorems 4.5 and 4.7. ×

7 The Canonical Sub-Riemannian Connection

The purpose of this section is to present a global geometric construction of a torsion-free connection 

 on the tangent bundle  which preserves, in some sense, a  semi-definite metric  on the 

cotangent bundle  induced by a section σ of  of constant rank. In other words, 

we assume that there exists a rank r vector bundle , a sub-bundle of the tangent bundle, such 

that  for all .

Given such a section σ, we obtain a vector bundle morphism  by the formula

, , (78)

where  is the canonical isomorphism induced by the Euclidean inner product. The rela-

tion between α and  is that, omitting x,

, . (79)

7.1 Lemma

Under the constant-rank assumption, any Riemannian metric on N induces an orthogonal splitting of 

the cotangent bundle of the form

, (80)

where  is a rank r sub-bundle of the cotangent bundle on which  is non-degenerate. There 

exists a vector bundle isomorphism  such that , and 

 is a generalized inverse to , in the sense that

∇° dφ0 0= Tψ xδ( ) M

ψ*∇° dφδ x0( ) Πδ( ) ψδ t–( )
*

∇° dφt x0( )( ) Π td
0

δ
∫–  =

Dψ xδ( ) τ t
δ

D
2ξ xt( ) Ξt( ) Γ xt( ) σ σ⋅( ) xt( )( )–[ ] td

0

δ
∫ Γ xδ( ) Ξδ( ) τ0

δΓ x0( ) Ξ0( )–+{ }

∇ dψ xδ( ) v w⊗( )

D
2ψ xδ( ) v w⊗( ) JΓ xδ( ) v w⊗( )– Γ yδ( ) Jv Jw⊗( )+

yδ ψ xδ( )≡ J Dψ xδ( )≡ v w⊗ Ξ δ Txδ
N Txδ

N⊗∈=

J τ t
δ

D
2ξ xt( ) Ξt( ) Γ xt( ) σ σ⋅( ) xt( )( )–[ ] td

0

δ
∫ D

2ψ xδ( ) Ξδ( ) Jτ0
δΓ x0( ) Ξ0( )– Γ yδ( ) JΞδJ

T( )+ +

∇ dψ xδ( ) φδ( )
*
Π

δ
( ) ψ* ∇° dφδ x0( ) Πδ( ) φδ t–( )

*
∇° dφt x0( )( ) Π td

0

δ
∫–{ }+=

∇° TN C
2

. .〈 | 〉
T∗ N Hom R

p
TN;( )

E N→
Ex range σ x( )( ) TxN⊆= x N∈

α :T∗ N TN→

α x( ) σ x( ) ι• σ x( ) ∗•≡ x N∈

ι : R
p( ) ∗

R
p→
. .〈 | 〉

µ α λ( )⋅ µ λ〈 | 〉≡ µ T∗ N∈∀

Tx
∗ N Ker α x( )( ) Fx⊕=

F N→ . .〈 | 〉
α° :T∗ N TN→ Fx Ker α° x( ) α x( )–( )=

α° x( ) 1– α x( )
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.

Proof: For any matrix A, , and so . It fol-

lows that

.

Given a Riemannian metric g on N (which always exists), let  be the dual metric on the cotan-

gent bundle. Define

.

We omit the proof that  is a vector bundle. Since , it follows that 

; since the rank of  is r, we see that  for all non-zero . This shows that 

 is non-degenerate on the sub-bundle .

Now (80) results from the orthogonal decomposition of  with respect to . Hence an arbi-

trary  can be decomposed as , with  and . The metric 

 induces a vector bundle isomorphism , namely

, .

Now define  by

.

It is clearly linear, and a vector bundle morphism. Since β is injective,

,

which shows that . To show  is an isomorphism, it suffices to show that 

 whenever . When , non-degeneracy of  implies that

.

On the other hand when , and , non-degeneracy of  on  implies that

.

Hence  is a vector bundle isomorphism as claimed. The generalized inverse property 

follows from the fact that . ×

7.2 Proposition

Suppose σ is a constant-rank section of , inducing a semi-definite metric  on  

and a vector bundle morphism  as in (78) and (79). Suppose furthermore that 

 is a vector bundle isomorphism such that , as in 

α x( ) α° x( ) 1–• α x( )• α x( )=

range A( ) range AA
T( )= range α x( )( ) range σ x( )( )=

dim Ker α x( )( ) p dimEx– p r–= =

. .〈 | 〉°

Fx θ Tx
∗ N∈  : θ λ〈 | 〉 x° 0= λ Ker α x( )( )∈∀{ }≡

F N→ dim Ker α x( )( ) p r–=

dimFx r= . .〈 | 〉 θ θ〈 | 〉 0> θ Fx∈
. .〈 | 〉 F N→

Tx
∗ N . .〈 | 〉°

λ Tx
∗ N∈ λ λ 0 λ1⊕= λ0 Ker α x( )( )∈ λ 1 Fx∈

. .〈 | 〉° β :T∗ N TN→

µ β λ( )⋅ µ λ〈 | 〉°≡ µ T∗ N∈∀

α° :T∗ N TN→

α° λ( ) β λ0( ) α λ 1( )+≡

λ Tx
∗ N∈  : α° λ( ) α λ( )={ } λ 0 λ1⊕ Tx

∗ N∈  : β λ0( ) 0={ } Fx= =

Fx Ker α° x( ) α x( )–( )= α°
α° λ( ) 0≠ λ 0≠ λ0 0≠ . .〈 | 〉°

λ0 α° λ( )⋅ λ0 λ0〈 | 〉° λ 0 λ1〈 | 〉+ λ0 λ0〈 | 〉° 0≠= =

λ0 0= λ1 0≠ . .〈 | 〉 F N→

λ1 α° λ( )⋅ λ1 α λ 1( )⋅ λ1 λ1〈 | 〉 0≠= =

α° :T∗ N TN→
α x( ) α° x( ) 1–• α x( )• λ( ) λ1=

Hom R
p

TN;( ) . .〈 | 〉 T∗ N

α :T∗ N TN→
α° :T∗ N TN→ α x( ) α° x( ) 1–• α x( )• α x( )=
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Lemma 7.1. Then  admits a canonical sub-Riemannian connection  for , with respect to 

, which is torsion-free, and such that the dual connection  preserves  in the following sense: 

for vector fields V in the range of α, and for 1-forms  which lie in the sub-bundle ,

. (81)

[Here .] For any 1-forms , and corresponding vector fields

, , ,

the formula for  is:

. (82)

7.2.a Expression in Local Co�rdinates

Take local co�rdinates for N, so that  is represented by a matrix , and  by a 

matrix , where by Lemma 7.2,

.

Take , , and  in (82), so that , etc.; (82) becomes

. (83)

When  is non-degenerate, then , and (83) reduces to the standard formula for the 

Levi-Civita connection for g, namely

.

7.2.b Remark

A similar construction appears in formula (2.2) of Strichartz [25], where he cites unpublished work of 

N. C. G�nther.

7.2.c Proof of Proposition 7.2

First we check that the formula (82) defines a connection. The R-bilinearity of  is 

immediate. To prove that  for all , we replace W by  and λ 

by  on the right side of (82), and the required identity holds. Verification that (82) is torsion-free is 

likewise a straightforward calculation.

Next we shall verify (81). By (79), and the definition of duality, taking , 

.

Switch µ and λ in the last expression to obtain:

TN ∇° . .〈 | 〉
α° ∇ˆ . .〈 | 〉

θ λ, F Ker α° α–( )≡

V θ λ〈 | 〉 ∇ˆ Vθ λ〈 | 〉 θ ∇ˆ Vλ〈 | 〉+=

∇̂ Zθ W⋅ Z θ W⋅( ) θ ∇° ZW⋅–= θ µ λ, ,

Y α° θ( )≡ Z α° µ( )≡ W α° λ( )≡

∇°

µ ∇° YW⋅ 1
2
--- Y λ µ〈 | 〉 W µ θ〈 | 〉 Z θ λ〈 | 〉– λ Z Y,[ ]⋅ µ Y W,[ ]⋅ θ W Z,[ ]⋅–+ + +{ }≡

α° x( ) 1–
glm( ) α x( )

α jk( )

α jk
gkrα

rm

k r,
∑ α jm

=

Y ∂ ∂xi⁄≡ W ∂ ∂xj⁄≡ Z ∂ ∂xk⁄≡ µ gksdx
s∑=

Γ i j
s

gsk
s
∑ 1

2
---

xi∂
∂ gjrα

rs
gsk( )

xj∂
∂ girα

rs
gsk( )

xk∂
∂ girα

rs
gsj( )–+{ }

r s,
∑=

. .〈 | 〉 gjrα
rs

r
∑ δj

s
=

Γ i j
s

gsk
s
∑ 1

2
---

xi∂
∂gjk

xj∂
∂gik

xk∂
∂gij–+

 
 
 

=

Y W,( ) ∇° YW→
∇° YfW f∇° YW Yf( ) W+= f C

∞
N( )∈ fW

fλ

V α θ( )≡

µ ∇° Vα λ( )⋅ V µ α λ( )⋅( ) ∇̂ Vµ α λ( )⋅– V λ µ〈 | 〉 λ ∇ˆ Vµ〈 | 〉–= =
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.

Taking  and , we see that

. (84)

In terms of the splitting  of Lemma 7.1, we may write , etc., and 

we find that, if , then , etc. It follows from (82) that

;

.

To prove (81), we can assume , and now the right side of (84) becomes

,

as desired. ×

8 Future Directions

We would like to find out under what conditions on ξ, , ψ, and h the system of PDE (16) - (17) 

has a unique solution for small time, other than the well-known case where  is non-degenerate, 

and ; likewise for the parametrized family (21) - (22). It is likely that the conditions will involve 

the energy of the composite maps . Both stochastic and geometric methods should 

be considered. Another valuable project would be to derive bounds on the error of approximation 

involved in the linearization used in Theorem 4.7. This is likely to involve the curvature under the diffu-

sion variance semi-definite metric Ð see Darling [9]. 
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